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It is well known that the equilibrium of a fluid contained in a plane vertical layer or chan-
nel and heated from below becomes unstable, when the temperature gradient reaches its
critcal value, We find [1] that perturhations, velocity vectors of which are parailel to

the generators of the channel, correspond to 2 minimum value of the Rayleigh number

and are most susceptible to the instability effect, Cellular perturbations perfodic with
respect to the axis of the channel, correspond to higher values of the Tayleigh number

[2 and 3],

The situation is different in the case of plane horizontal layers or channels, When we
have a horizontal layer heated from below, we find that the onset of instability is caused
by perturbations possessing a definite wavelength [4], and periodic in the planeof the
layer, In the case of a horizontal circular cylinder, experiments {5] and calculations [8]
have shown that the appearance of instability is also connected with cellular perturba-~
tions,

Below we investigate how the form of instability changes with incHnation of the chan-
nei relative to the vertical and we study the convective stability of a plane layer arbi-
trarily oriented with respect to the force of gravity, It appears that at some critical value
Qo of the angle of inclination of the plane of the layer to the vertical, the instability
changes its character (transition from the plane-parallel to the cellular perturbations),
When & > (g , then critical perturbations possess a finite wavelength,

A method of small parameter based on expansion of perturhations into power series in
terms of a dimensionless wave number %, was used in studying long-wave perturbations,
This yielded spectra of perturbations and of the critical Rayleigh numbers at small %,
and made it possible to determine the critical angle Q05 . For a layer bounded by per-
fectly heat-conducting planes, Ly = 21°,

Lower instability levels at arbitrary wave numbers were investigated with help of the
Galerkin method, The boundary value problem for perturbation amplitudes is reduced
to a system of homogeneous linear algebraic equations for the coefficients of the expan-~
sion, and its matrix is numerically diagonalized on the digital computer, Eigenvalues,
i.e, the critical values of the Rayleigh number were found for various values of ¢t and A,

1, Perturbation equations, A plane infinite layer of thickness 2% inclined
at an angle O to the vertical (Fig, 1}, is heated from below in such a manner, that a state
of equilibrium is possible, During the equilibrium the fluld is at rest, The temperatwe
T and the pressure P (Wwith respect to hydrostatic pressure at constant density Dg) are

given by VT, = — 4, Vo = pogBToy (4.1)

where Y is the unit vertical vector directed upwards, 4 is the constant equilibrium tem-
perature gradient (4 > 0 corresponds to heating from below), while  and B are the
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acceleration due to gravity and the coefficient of thermal expansion, respectively,
Usual convection equations yield equations of "neutral” perturbations

VP | yAv 4 gBTy =0, vVT,=xAr, divwv=0  (1.2)
20

Here v and Y are the coefficients of kinematic viscosity and heat conductivity , res-
pectively, We can rewrite these equations in a dimensionless form, using A, X /A, AR
and Py VY /h,g as the units of distance, velocity, temperature and pressure, respectively,
Then (1, 2) can be replaced by dimensionless equations for
velocity, temperature and pressure perturbations denoted,
as before, by v,7 and p

Av 4+ RTy = Vp, R = gBAh* [ vy (1.3)
AT = — (vy), divv =20 (1.4)

where the Rayleigh number /7 is a dimensionless parameter,

In the following we shall consider Qnly such plane per-
turbations, for which velocity components Uy and O, #o,
Uy = 0 and all magnitudes are independent of }/, In this
case we can introduce a stream function

Fig, 1 v, = 0W/0z, v,= — OPp/ox (1.9

Taking curl of (1. 3) to eliminate the pressure component and introducing the stream
function, we obtain

AAY — R (sin a%g -+ cosa %) =0, AT — (sinoc%%— +4- cos o a—ﬂi) = 0(1.6)

ox
"Normal" perturbations periodic in the Z -direction, can be written in the form
Y(2, 2) = @ (x)ei?, T (z, z) = O (x) e¥* (1.7)
where % is the real wave number. Inserting (1,7) into (1, 6) we obtain Eqs, for amplitudes
of perturbations ¢p(x) and 6 (x)
@1V — 2k%¢" + k¢ = R (iksina® + cosaf’) (1.8)
0" — k* = iksinag + cosag’ (1.9
Both velocity components together with the temperature perturbation disappear on the

boundaries of the layer (last condition corresponds to the case of perfectly conducting
walls), Boundary conditions of (1, 8) and (1, 9) then become

¢ =¢ =0=0 when r=+41 (1.10)
The problem (1, 8) to (1, 10) is characteristic, yielding the critical values of the Ray-
leigh number /7 (for given 0 and 4) and the corresponding critical motions,

2., Long wave perturbations, Critical angle, Ifthe wave of a per-
turbation is large when compared with the thickness of the layer, then the dimensionless
wave number 4 is small and the method of small parameter can be used to obtain a
solution to our problem,

We shall seek the amplitudes of perturbations ¢ and 6 and the critical Rayleigh num-
ber R expressed as power series in terms of a small parameter (LX)

@ = @O + (ik) oV + (k)@@ + .. 2.1)
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8 = 00 + (ik) 6N + (ik)0® + ... 2.2)
R = RO + KR® + I*R® + .. 2.3)

(since A is real,(2,3) obviously contains only even powers of %), Equations of consecu-
tive approximations are

(p(O)IV — R©® cosa 8o . 0, 8" . cos a(p(o)' =0 (24)

¢V — R cos a8 = R sin o 6. 8" —cosa g™ =sina¢® (2.5)

¢®V — R cosa8® = —2¢" + R¥sina 0" — R® cos a8  (2.6)
0" —cosap® = — 08 +sina o™ and so on,

The boundary conditions coincide, for all approximations, with (1,10),

Zero approximation (2, 4) gives critical values R® and corresponding amplitudes for
plane-parallel perturbations (% = 0), Homogeneous system (2, 4) defines, together with
boundary conditions (1, 10), two classes of solutions, Solutions belongine to the first class
("odd" solutions) will have both, velocity U/® and the temperature & , appearing as
odd functions of X, and will have the form

©) . °O8YT (0 _ cosa sin 1r i
P sy — b V= e 2.7
1= (R® cos?a) (2.8)

A relation characteristic to odd solutions, leads to the following spectrum of odd insta-~

bility levels

n (0) _ vrd . n(n( )
t=nx, R = odd = costa (n=1,2,3..) 2.9)
The amplitudes of even solutions are
o . Sintz  shyw (0 _ cosa [cos’r——cosyx chT—chTz]
o0 = sin ¥ shy °* 8 Y siny + shy (2.10)

Here ¥ is related to R(® by (2, 8), but in the case of even solutions the values of Y
are given by the roots of the following Eq,

tgy =thy (1=3.927, 7.039,...) (2.11)
Similarly, we find the critical levels R© for even perturbations
R(O) — Tt (3.927p (7.069)* (2‘12)
costa ~  costa ' coste '°°°

0dd and even levels in the spectrum of critical values of y (and hence of R®) alter-
nate in the following manner:

Pr=1, y,=3.927, yy=2n 7y,=7.069, ... 2.13)

Consecutive approximation equations must be used to find the corrections to the levels
and amplitudes at small values of /%, A nofthomogeneous system must be solved in each
approximation, and the condition of solvability of this system defines the corresponding
correction to the nonperturbed critical value,

First order amplitude corrections are given by (2. 5), On inspection of the right-hand
sides of (2. 5) we can easily see that the parity of first order corrections is opposite to
that of the zero order amplitudes, and this is true for all odd order corrections, Even order
amplitude corrections will, on the other hand, have the same parity as that of a zero
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approximation, From this it follows that the solution has, as a whole, no definite parity
when k# 0, and this can also be seen directly from the system (1, 8), (1. 9).
Let us write the higher order corrections to the amplitudes of odd solutions

' xcos Yx 3(ycthy—1) . 3 shyzx
(1) = A
® tga I 2cosY + 2y cosy smyz 2 shy T x} (2 14)
W .. _[xsinyz (2—3ycthy) __3chye 37cth7—~1] )
0 ——sula[szsT + 2712 cos Y cosyz 2yshy + 12

The values of Y are given by (2, 9), The corresponding formulas for the first order
amplitude corrections in the case of even solutions, are

tg o |z sinyx z sh yx 1+ 3vctgy
(1) — —
o0 = 2 { siny shy -+ 1siny cosYz +
4 LRI oy Zetgr (4 +3retgy)] (2.19)
Ysty T
(o " Jetgy . Jetgy _ mcosyT zchyr  2ctgy x]
0 = smd,’ 2y siny sinyz + 2vshy shyz 2ysiny 2vshy b

where values of Y are given by (2,11),
Zero and first order amplitudes can be used to find the second order correction R®,
This is obtained from the condition of solvability of a nonhomogeneous system (2, 8) for

the second order amplitudes
1 1

R® cos o § @00 dz = { (29070 4 RV 1

—1 —1
+ R sin a (90 — ¢@oMy) dz (2.16)
Insertion of previously obtained values of zero and first order amplitudes into (2, 16)

: . .

yields, for odd levels, R® C(Z)’);a [1 _ % (67 cthy —5)tg? oc} (2.17)
The behavior of neutral curves R (%) is, for small %, defined by the sign of R®. If

R® > 0, then the stability curve exhibits a minimum at % =0, while when R® < 0

we have a maximum, We see from (2. 17) that, for small ., R® is positive; it decreases

monotonously with increasing 0 and at some Q5 it changes its sign, Critical angle Q@

is defined by the condition R® = 0, from which we obtain

2 2
Ay = arCtg (m) (2.18)

The lowest odd level defines the threshold of convection, It is the fundamental level
of the spectrum and the corresponding value of Y is Y =TT (see (2, 9). Then, (2, 18) yields
Qg = 20°46°,

Thus, within the interval 0 <@ <Qg , the minimum Rayleigh number corresponds to
plane parallel perturbations when % = 0 and is equal, in accordance with (2, 9), to

4
Ry = 2 (2.19)

When @ >Qq , then the point k% =0 corresponds to a maximum on the curve ﬁl(k) ,
the minimum is displaced into the region %#0 and the corresponding critical value of
R is found numerically as shown in Section 3,

The behavior of the instability curves 7 (%) in the region of small % for higher order
odd levels is completely analogous to the behavior of the fundamental level which we
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have discussed above, All critical angles are obtained from (2, 18) by the substitution
Y=n1, Clearly, the value of O, decreases with increasing 72 . Putting Y=2T in (2,18)
we find, for the second odd level (third level A3 in the whole spectrum), 0y =13°53",
The behavior of even instablilty levels is established by inserting the values of zero
and first order approximations given for the even amplitudes by (2, 10) and (2, 15), into
(2.16). The resulting formula for #** analogous to (2, 17) is very unwieldy and is, there-
fore, not given here, However we can deduce from it, that the second order correction
to R is positive for all & . Thus, for all & , the neutral curves (%) of even levels have
a minimum at %4=0, and the corresponding minimum values of 77, are given by (2, 12),
It seems, that the method of small parameter leaves the question of uniqueness of the
minimum at %= 0, open, To settle it, we must consider the stability under perturbations
with a finite % (see Section 3), Nevertheless, we can already infer that a minimum
should exist for finite /% , in any case, for angles near to 90°, Indeed, as @™ 90°, we ob-
tain the Rayleigh problem of stability of a horizontal layer in which, as we know, mini-
mum critical values of the Rayleigh number correspond at all levels of instability, to
finite wavelengths,

3, Numerical results, The complete system (1, 8) and (1, 9) must be used to
obtain the spectrum of instability at finite values of the wave number %, A general
solution of a linear system with constant coefficients (1, 8) and (1, 9) can be written out,
but the resulting characteristic equation from which critical Rayleigh numbers must be
obtained, is very complex, Therefore an approximate method due to Galerkin is found
to be more rewarding, To use it, we shall represent the amplitudes of the stream function
and temperature in the form

Q= agPy a1y - P -+ . . ., 0 = by + 5,0, - b0, - . . . (3.1)

where the eigenfunctions of the following boundary value problems
@'V —2RQy" A ki = —py (§i” — k), Q=@ =0 when x=-L1 (3
0" — k0, = — v, 0,=0 when r=+41 (3.3)

play the part of the base functions ¢p; and 8 .

They are given in their explicit form together with relations for the eigen numbers in
[7], where the above base was used in investigating the spectrum of normal perturbations
of a steady convective motion,

Inserting (3, 1) into (1, 8) and (1, 9), multiplying first of the resulting expressions by ¢,
and the second one by 0; and integrating with respect to X from —1 to +1, we obtain
an infinite linear homogeneous system of equations of the Galerkin method for the coef-
ficients @, and b, .

Equating the determinant of this system to zero, we obtain a characteristic equation
defining the critical values of R as functions of @ and % . We can write this equation as
(a) (b)
(0 @

where (@),(D).(¢) and (d) are matrices whose general terms are given by

=0 (3.4)

- e
@, =—R711.8,., bup=rtksinaC, +cosaD,

Cppp = ik sinaC,,, —cosaD, @n = 2Vm S (3.5)
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Here Oy, is a Kronecker delta, while matrix elements Cyy , D gy and J, have values
depending on signs of the indices

Copp = (—1)¥*™ f_ (whenm and 7 are even)

Copn = (— 1)V ;1 (when 7 and 7, are odd)

Copn =0 (when /% and 7 are of opposite signs)
D, = (—1)/2m+2) fum & Cth K (when 7 is even and 7 is odd)
D, — (_1)1/:(m+1) foom R tu k (when /7 is odd and 7, is even)
D,.=0 (when/% and 7, are of the same sign)
I ~L( — k2 —kthk 4 k2th2k hen 7 i
™ = D — A7) Wm — —+ k2 } (when 7 is even)
2
[ = —zml‘m—_ﬁ (i — k2 — k cth k - &2 cth? &) (when 71 is odd)
m
_nim A Dy,

, .

MR 2V (W Vin)

First eight terms were retained in each expansion of (3, 1), Under these conditions the
characteristic Eq, (3. 4) , the left-hand side of which was a 16th order determinant, yielded
eight levels of the spectrum of critical values of X, However only the lowest levels were

found to be sufficiently accurate, 2
N ﬂ’\ a)
n

(3.6y

0 / i
| |
m\— E —
w g = 7 o”lﬂ” w
185

1 /

1

A :
7 7 A 4 7

Fig, 2 Fig, 3

Orthogonal step method [8] was used to diagonalize the matrix. Actual computation
was performed on the "Aragats" digital computer (here thanks are due to S, Keller and
A, Koblov for help in performing the computations),

Let us now discuss the obtained results,

Fig, 2 gives the neutral curves R (/) of the fundamental instability level for various
angles of inclination of the layer towards the vertical, When 00 <21°, the critical
values of 7, increase monotonously with /, and a minimum corresponds to /4 =0, When
QL > 21°, then in accordance with Section 2 the minimum is displaced into the region
ks # 0. Fig. 3q gives the minimum value /7, _ defining the limit of stability relative to
the angle of inclination 0., We see from it that the stability reaches its maximum in
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the region of 0L =35°, When @ = 90° (plane horizontal layer heated from below ( *),
]?1_= 106, 8 and the corresponding wave num-

e £, 7] / ber 4y,=1.56,
/ An interesting fact emerges from our dis-

cussion, namely, that the critical number ﬁ’l'

10 AN

is weakly dependent on the angle of inclina-
&’ 7 tion, However, during the change of inclina-
tion the instability alters its character; when

w0 }
e / <z
40° ot
2’ 0l 1.7/

/ 100

/ |
24 IRy
0 I

7 ? s 4 77

Rou

~JL,

- — - P

]

Fig, 4 Fig, 5

Q. < 21°, the instability is caused by plane parallel motions (4 = 0), while when @ >21°,
the instability appears in the form of Benard cells whose wave number %, increases mo-
notonously with & (Fig, 3b).

We shall now investigate the behavior of %, near the critical angle Q. , using (2, 17),
Wwith (2, 18) taken into account, we can write the second order correction R as
312(6y cth y — 5)

R® = =5 (tg? ap — tg2a) (3.7)
When QU is nearly equal to Qg , We have
R® = g (g — ) (3.8)
Expansion (2, 3) of the critical Rayleigh number up to and including k4, is
R=RY — a(a— o) k2 + RWp (a>0, R¥>0) (3.9
Minimizing /7 in % we now find that
a s
ky = (W(a— ao)> (3.10)

i.e. 71:' increases as a square root whena = o,,

Next we shall consider the second instability level #g. The neutral curves A5 (%)
are given, for various ., in Fig, 4, In accordance with the results obtained by the method
of small parameter (Section 2), a minimum now exists on stability curves at the point

*) It should be noted that we have used half of the width of the layer in determining
the Ra:jyleigh number, If total width and temperature difference are used, then the value
quoted above should be multiplied by 16, and this yields #;* = 1709 which is in good
agreement with [4],
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4 =0 for all values of L, The corresponding minimum value A5, varies with Q. accord-
ing to (2, 12) (first root) and is shown in Fig, 5 by the curve 1, With increasing O, a point
of inflection appears on stability curves, and is followed by a second minimum at Q =43°

s P R
6°
w \ ’] 50 f\,/ . u
oA N 7
VYeE -
T L7 —

/ 2
Py J9° fﬂ"_/ /
:a‘ — —1
g £ }
7 Z J ¢ 5 g 2 4 '
Fig. 6 Fig, 7

and %4=2,0, When q increases further, this minimum shifts towards the higher wave
numbe.., Fig,5 curve 2 shows the dependence of the corresponding minimum critical
number A5, on ., The critical wave number /%, increases monotonously along the curve
2, from 2,0 at 0 =43° to 2,7 at 0 =90°, The change of the instability character (tran-
sition from plane parallel to the cellular motion) takes place at 0.=63" at the point of
intersection of the curves 1 and 2, where /4, changes discontinuously from zero to some
finite value,

In the limiting case when Q.= 90°, A = 1102 (second level of the Rayleigh instability
spectrum in a horizontal layer, seef4] ).

The behavior of the upper levels of instability is more complex, The neutral curves
R (%) have several extrema; their number depends on the angle and increases with the
index of the level, In the limit when Q. = 90°, higher levels of the Rayleigh spectrum are
obtained, Figs. 6 and 7 give the neutral curves Z(%) for the third and fourth levels,

In conclusion we note that the change of the character of the instability during the
variation of inclination is, apparently, typical for long channels of arbitrary cross section,
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